| Name of Topic Real Numbers ${ }^{\text {d }}$ Duration: \# days (Quarter 1) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Standard(s) | Envision Lesson | Objective | Vocabulary | Materials |
| 8.NS. 1 Give examples of rational and irrational numbers and explain the difference between them. Understand that every number has a decimal equivalent. For rational numbers, show that the decimal equivalent terminates or repeats, and convert a repeating decimal into a rational number. | 1-1: Rational Numbers as Decimals | SWBAT write repeating decimals as fractions. <br> Language Objective: SWBAT explain how to write repeating decimals as fractions. |  | - Online textbook examples and resources <br> - PowerPoint/Word <br> Document <br> - Canvas <br> Small Group: |
| 8.NS. 1 Give examples of rational and irrational numbers and explain the difference between them. Understand that every number has a decimal equivalent. For rational numbers, show that the decimal equivalent terminates or repeats, and convert a repeating decimal into a rational number. | $1-2$ <br> Understand <br> Irrational <br> Numbers | SWBAT identify an irrational number. <br> Language Objective: SWBAT explain how to identify a number that is irrational. | - Irrational number <br> - Perfect square <br> - Square root | - Online textbook examples and resources <br> - PowerPoint/Word Document <br> - Canvas <br> Small Group: |
| 8.NS. 2 Use rational approximations of irrational numbers to compare the size of irrational numbers, plot them approximately on a number line, and estimate the value of expressions involving irrational numbers. | 1-3 Compare and Order Real Numbers | SWBAT compare and order rational and irrational numbers. <br> Language Objective: SWBAT describe ways to compare and order rational and irrational numbers |  | - Online textbook examples and resources <br> - PowerPoint/Word Document <br> - Canvas <br> Small Group: |
| 8.C. 1 Solve real-world problems with rational numbers by using multiple operations. | 1-4 Evaluate Square Roots | SWBAT find square roots and cube roots of rational numbers. | - Cube root <br> - Perfect cube | - Online textbook examples and resources |

$\left.\begin{array}{|l|l|l|l|l|}\hline & \begin{array}{l}\text { and Cube } \\ \text { Roots }\end{array} & \begin{array}{l}\text { Language Objective: SWBAT } \\ \text { show and explain how to find } \\ \text { square roots and cube roots of } \\ \text { rational numbers. }\end{array} & & \begin{array}{l}\bullet \text { PowerPoint/Word } \\ \text { Document } \\ \bullet \text { Canvas }\end{array} \\ \text { Small Group: }\end{array}\right]$

| 8.C. 1 Solve real-world problems with rational numbers by using multiple operations. |  | - evaluate expressions with negative and zero exponents. <br> Language Objective: SWBAT describe how to write a number with a negative or zero exponent in a different way. |  | Small Group: |
| :---: | :---: | :---: | :---: | :---: |
| 8.C. 2 Solve real-world and other mathematical problems involving numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Interpret scientific notation that has been generated by technology, such as a scientific calculator, graphing calculator, or excel spreadsheet. | 1-8 Use Powers of 10 to Estimate Quantities | SWBAT estimate very large and very small quantities by rounding and then writing that number as a single digit times a power of 10 . <br> Language Objective: SWBAT describe ways to estimate large and small quantities using a power of 10. |  | - Online textbook examples and resources <br> - PowerPoint/Word Document <br> - Canvas <br> Small Group: |
| 8.C. 2 Solve real-world and other mathematical problems involving numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Interpret scientific notation that has been generated by technology, such as a scientific calculator, graphing calculator, or excel spreadsheet. | $1-9$ <br> Understand Scientific Notation | SWBAT <br> - use scientific notation to write very large or very small quantities. <br> - convert numbers written in scientific notation to standard form. <br> Language Objective: SWBAT explain how to use scientific notation to write very large or very small quantities. | - Scientific notation | - Online textbook examples and resources <br> - PowerPoint/Word <br> Document <br> - Canvas <br> Small Group: |
| 8.C. 1 Solve real-world problems with rational numbers by using multiple operations. | 3-Act <br> Mathematical Modeling: | SWBAT <br> - use mathematical modeling to represent a problem |  | - Online textbook examples and resources |


| 8.C. 2 Solve real-world and other mathematical problems involving numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Interpret scientific notation that has been generated by technology, such as a scientific calculator, graphing calculator, or excel spreadsheet. | Hard-Working Organs (Supplemental) | situation and to propose a solution. <br> - test and verify the appropriateness of their math models. <br> - explain why the results from their mathematical models may not align exactly to the problem situation. |  | - PowerPoint/Word <br> Document <br> - Canvas <br> Small Group: |
| :---: | :---: | :---: | :---: | :---: |
| 8.C. 1 Solve real-world problems with rational numbers by using multiple operations. <br> 8.C. 2 Solve real-world and other mathematical problems involving numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Interpret scientific notation that has been generated by technology, such as a scientific calculator, graphing calculator, or excel spreadsheet. | 1-10 <br> Operations with Numbers <br> in Scientific <br> Notation | SWBAT apply number properties to calculations with numbers in scientific notation. <br> Language Objective: SWBAT explain how to perform operations with numbers in scientific notation. |  | - Online textbook examples and resources <br> - PowerPoint/Word <br> Document <br> - Canvas <br> Small Group: |


| Topic \#: 2 (Pre-Work, 2-1 to 2-4) | Analyze and Solve Linear Equations |  |  |  |  | Duration: \# days (Quarter 1) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Standard(s) | Envision <br> Lesson | Objective | Vocabulary | Materials |  |  |
|  | X Out of <br> Textbook |  | $\bullet$ | $\bullet$ |  |  |


| 8.C. 1 Solve real-world problems with rational numbers by using multiple operations. <br> 8.AF. 1 Solve linear equations and inequalities with rational number coefficients fluently, including those whose solutions require expanding expressions using the distributive property and collecting like terms. Represent real-world problems using linear equations and inequalities in one variable and solve such problems. | 2-1 Combine Like Terms to Solve Equations | SWBAT <br> - combine like terms. <br> - solve equations with like terms on one side of the equation. <br> - make sense of scenarios and represent them with equations. <br> Language Objective: SWBAT explain how to solve equations that have like terms on one side. | - Online textbook examples and resources <br> - PowerPoint/Word <br> Document <br> - Canvas <br> Small Group: |
| :---: | :---: | :---: | :---: |
| 8.C. 1 Solve real-world problems with rational numbers by using multiple operations. <br> 8.AF. 1 Solve linear equations and inequalities with rational number coefficients fluently, including those whose solutions require expanding expressions using the distributive property and collecting like terms. Represent real-world problems using linear equations and inequalities in one variable and solve such problems. | 2-2 Solve Equations with Variables on Both Sides | SWBAT <br> - solve equations with like terms on both sides of the equation. <br> - make sense of scenarios and represent them with equations. <br> Language Objective: SWBAT explain how to solve equations with variables on both sides of the equal sign. | - Online textbook examples and resources <br> - PowerPoint/Word <br> Document <br> - Canvas <br> Small Group: |
| 8.C. 1 Solve real-world problems with rational numbers by using multiple operations. | 2-3 Solve <br> Multistep <br> Equations | SWBAT plan multiple solution pathways and choose one to find the solution to multistep equations. | - Online textbook examples and resources |


| 8.AF. 1 Solve linear equations and inequalities with rational number coefficients fluently, including those whose solutions require expanding expressions using the distributive property and collecting like terms. Represent real-world problems using linear equations and inequalities in one variable and solve such problems. |  | Language Objective: SWBAT explain and show how to solve multistep equations and pairs of equations using more than one approach. | - PowerPoint/Word <br> Document <br> - Canvas <br> Small Group: |
| :---: | :---: | :---: | :---: |
| 8.C. 1 Solve real-world problems with rational numbers by using multiple operations. <br> 8.AF. 2 Generate linear equations in one variable with one solution, infinitely many solutions, or no solutions. Justify the classification given. | 2-4 Equations with No Solutions or Infinitely Many Solutions | SWBAT determine the number of solutions to an equation. <br> Language Objective: SWBAT explain how to determine the number of solutions an equation has. | - Online textbook examples and resources <br> - PowerPoint/Word Document <br> - Canvas <br> Small Group: |
| 8.AF. 1 Solve linear equations and inequalities with rational number coefficients fluently, including those whose solutions require expanding expressions using the distributive property and collecting like terms. Represent real-world problems using linear equations and inequalities in one variable and solve such problems. | IN-1 Solve Inequalities | SWBAT <br> - explore the relationship between two-step inequalities and multi-step inequalities. <br> - apply the Distributive Property to simplify and solve multi-step inequalities. | - Online textbook examples and resources <br> - PowerPoint/Word <br> Document <br> - Canvas <br> Small Group: |
| 8.AF. 1 Solve linear equations and inequalities with rational number coefficients fluently, including those whose solutions require expanding | 3-Act <br> Mathematical <br> Modeling: <br> Powering | SWBAT <br> - use mathematical modeling to represent a problem | - Online textbook examples and resources |


| expressions using the distributive property and collecting like terms. Represent real-world problems using linear equations and inequalities in one variable and solve such problems. <br> 8.AF. 2 Generate linear equations in one variable with one solution, infinitely many solutions, or no solutions. Justify the classification given. | Down (Supplemental) | situation and to propose a solution. <br> - test and verify the appropriateness of their math models. <br> - explain why the results from their mathematical models may not align exactly to the problem situation. | - PowerPoint/Word <br> Document <br> - Canvas <br> Small Group: |
| :---: | :---: | :---: | :---: |


| ic \#: 6 Congruence and Similarity |  | Duration: \# days (Quarter 2) |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Standard(s) | Envision Lesson | Objective | Vocabulary | Materials |
| 8.GM. 3 Verify experimentally the properties of rotations, reflections, and translations, including: lines are mapped to lines, and line segments to line segments of the same length; angles are mapped to angles of the same measure; and parallel lines are mapped to parallel lines. <br> 8.GM. 6 Explore dilations, translations, rotations, and reflections on twodimensional figures in the coordinate plane. | 6-1 Analyze <br> Translations | SWBAT <br> - use coordinates to describe the rules of a translation <br> - translate a two-dimensional figure on a coordinate plane by mapping each of its vertices <br> Language Objective: SWBAT explain how to translate twodimensional figures. | - Transformati on <br> - Translation <br> - image | - Online textbook examples and resources <br> - PowerPoint/Word <br> Document <br> - Canvas <br> Small Group: |
| 8.GM. 3 Verify experimentally the properties of rotations, reflections, and translations, including: lines are mapped to lines, and line segments to line | 6-2 Analyze Reflections | SWBAT <br> - understand reflections as a type of transformation and | - Reflection <br> - Line of reflection | - Online textbook examples and resources |

segments of the same length; angles are mapped to angles of the same measure; and parallel lines are mapped to parallel lines.
8.GM. 6 Explore dilations, translations, rotations, and reflections on twodimensional figures in the coordinate plane.

|  |  |
| :--- | :--- |
| 8.GM.3 Verify experimentally the <br> properties of rotations, reflections, and | 6-3 Analyze <br> Rotations |

properties of rotations, reflections, and translations, including: lines are mapped to lines, and line segments to line segments of the same length; angles are mapped to angles of the same measure; and parallel lines are mapped to parallel lines.
8.GM.6 Explore dilations, translations, rotations, and reflections on twodimensional figures in the coordinate plane.
8.GM. 3 Verify experimentally the properties of rotations, reflections, and translations, including: lines are mapped to lines, and line segments to line segments of the same length; angles are mapped to angles of the same measure;

## Grade Level: $8 \quad$ Subject: Math

 RotationsCritical (1/3)
Moderate (0/2) or
(0/3)
Low (0/1)

- PowerPoint/Word

Document

- Canvas

Small Group:

SWBAT

Language Objective: SWBAT explain how to rotation a twodimensional figure.

## 6-4 Compose

Transformatio
ns

- reflect a two-dimensional figure on a coordinate plane.

Language Objective: SWBAT explain how to reflect twodimensional figures.

- identify and perform a rotation.
- determine how a rotation affects a two-dimensional
how they differ from translations.
- use coordinates to describe the image created by a reflection.


## figure.

- Rotation
- Angle of rotation
- Center of rotation
- Online textbook
examples and resources
- PowerPoint/Word

Document

- Canvas

Small Group:

- Online textbook
examples and
resources
- PowerPoint/Word

Document

- Canvas


## Grade Level: $8 \quad$ Subject: Math

| and parallel lines are mapped to parallel lines. <br> 8.GM.6 Explore dilations, translations, rotations, and reflections on twodimensional figures in the coordinate plane. |  | Language Objective: SWBAT explain how to describe and perform a sequence of transformations |  | Small Group: |
| :---: | :---: | :---: | :---: | :---: |
| 8.GM. 3 Verify experimentally the properties of rotations, reflections, and translations, including: lines are mapped to lines, and line segments to line segments of the same length; angles are mapped to angles of the same measure; and parallel lines are mapped to parallel lines. <br> 8.GM. 6 Explore dilations, translations, rotations, and reflections on twodimensional figures in the coordinate plane. | 3-Act <br> Mathematical <br> Modeling: <br> Tricks of the <br> Trade <br> (Supplemental) | SWBAT: <br> - use mathematical modeling to represent a problem situation and to propose a solution. <br> - test and verify the appropriateness of their math models. <br> - explain why the results from their mathematical models may not align exactly to the problem situation. |  | - Online textbook examples and resources <br> - PowerPoint/Word <br> Document <br> - Canvas <br> Small Group: |
| 8.GM. 4 Understand that a twodimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations. Describe a sequence that exhibits the congruence between two given congruent figures. | 6-5 <br> Understand <br> Congruent <br> Figures | SWBAT: <br> - use a sequence of transformations to justify the congruence of figures. <br> - understand that reflections, rotations, and translations are actions that produce congruent geometric figures. <br> Language Objective: SWBAT explain how to use a sequence of | - congruent | - Online textbook examples and resources <br> - PowerPoint/Word <br> Document <br> - Canvas <br> Small Group: |


|  |  | translations, reflections, and rotations to show that figures are congruent. |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 8.GM. 5 Understand that a twodimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations. Describe a sequence that exhibits the similarity between two given similar figures. | 6-6 Describe <br> Dilations | SWBAT: <br> - verify the properties of a dilation. <br> - graph the image of a dilation given a fixed center and a common scale factor. <br> Language Objective: SWBAT describe how to dilate twodimensional figures. | - Dilation <br> - Scale factor <br> - Enlargement <br> - Reduction | - Online textbook examples and resources <br> - PowerPoint/Word <br> Document <br> - Canvas <br> Small Group: |
| 8.GM. 5 Understand that a twodimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations. Describe a sequence that exhibits the similarity between two given similar figures. | 6-7 <br> Understand Similar Figures | SWBAT perform a sequence of transformations to identify similar figures. <br> Language Objective: SWBAT tell how to use a sequence of transformations including dilations to show that figures are similar. | - similar | - Online textbook examples and resources <br> - PowerPoint/Word <br> Document <br> - Canvas <br> Small Group: |
| 8.AF. 1 Solve linear equations and inequalities with rational number coefficients fluently, including those whose solutions require expanding expressions using the distributive property and collecting like terms. Represent real-world problems using linear equations and inequalities in one variable and solve such problems. | 6-8 Angles, Lines, and Transversals | SWBAT: <br> - identify relationships between angles formed by parallel lines and a transversal. <br> - determine the measures of angles formed by parallel lines and a transversal. <br> - reason about parallel lines. | - transversal <br> - correspondi ng angles <br> - alternate interior angles <br> - same-side interior angles | - Online textbook examples and resources <br> - PowerPoint/Word <br> Document <br> - Canvas <br> Small Group: |


|  |  | Language Objective: SWBAT explain how to identify and find the measures of angles formed by parallel lines and a transversal. |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 8.AF. 1 Solve linear equations and inequalities with rational number coefficients fluently, including those whose solutions require expanding expressions using the distributive property and collecting like terms. Represent real-world problems using linear equations and inequalities in one variable and solve such problems. | 6-9 Interior and Exterior Angles of Triangles | SWBAT: <br> - determine unknown measures of interior and exterior angles of triangles. <br> - write and solve algebraic equations to find angle measures. <br> Language Objective: SWBAT describe and show how to find the interior and exterior angle measures of a triangle. | - remote interior angles <br> - exterior angle of a triangle | - Online textbook examples and resources <br> - PowerPoint/Word <br> Document <br> - Canvas <br> Small Group: |
| 8.AF. 1 Solve linear equations and inequalities with rational number coefficients fluently, including those whose solutions require expanding expressions using the distributive property and collecting like terms. Represent real-world problems using linear equations and inequalities in one variable and solve such problems. | 6-10 AngleAngle Triangle Similarity | SWBAT: <br> - determine triangle similarity by comparing the angle measures of the triangles. <br> - solve algebraic problems involving similar triangles. <br> Language Objective: SWBAT explain how to use angle measures to determine whether two triangles are similar. |  | - Online textbook examples and resources <br> - PowerPoint/Word Document <br> - Canvas <br> Small Group: |

## Grade Level: 8 Subject: Math

| Topic \#: 7 Understand and Apply the Pythagorean Theorem Duration: \# days (Quarter 2) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Standard(s) | Envision Lesson | Objective | Vocabulary | Materials |
| 8.GM. 7 Use inductive reasoning to explain the Pythagorean relationship. | 3 Act Math Modeling: Go With the Flow (Supplemental) | SWBAT: <br> - use mathematical modeling to represent a problem situation and to propose a solution. <br> - test and verify the appropriateness of their math models. <br> - explain why the results from their mathematical models may not align exactly to the problem situation |  | - Online textbook examples and resources <br> - PowerPoint/Word <br> Document <br> - Canvas <br> Small Group: |
| 8.GM. 7 Use inductive reasoning to explain the Pythagorean relationship. <br> 8.GM. 8 Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and other mathematical problems in two dimensions. <br> 8.C. 1 Solve real-world problems with rational numbers by using multiple operations. | 7-1 <br> Understand the Pythagorean Theorem | SWBAT: <br> - understand a proof of the Pythagorean Theorem. <br> - use the Pythagorean Theorem to find the length of the hypotenuse or a leg of a right triangle. <br> Language Objective: SWBAT explain how to use the Pythagorean Theorem to find unknown sides of triangles. | - hypotenuse <br> - leg <br> - Pythagorean Theorem <br> - proof | - Online textbook examples and resources <br> - PowerPoint/Word <br> Document <br> - Canvas <br> Small Group: |
| 8.GM. 7 Use inductive reasoning to explain the Pythagorean relationship. | $7-2$ <br> Understand the Converse of the | SWBAT: <br> - understand and apply the Converse of the | - Converse of the Pythagorean Theorem | - Online textbook examples and resources |

## Grade Level: <br> 8 <br> Subject: Math

8.GM. 8 Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and other mathematical problems in two dimensions.


Solve real-world problems with rational numbers by using multiple operations.
8.GM. 8 Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and other mathematical problems in two dimensions.

## B.C. 1

 Solve real-world problems with rational numbers by using multiple operations.8.GM. 8 Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and other mathematical problems in two dimensions.
8.C. 1 Solve real-world problems with rational numbers by using multiple operations.
8.GM. 9 Apply the Pythagorean Theorem to find the distance between two points in a coordinate plane.

Pythagorean
Theorem


7-3 Apply the
Pythagorean
Theorem to
Solve
Problems
Problems
$\square$

Distance in the Coordinate Plane

Pythagorean Theorem to identify right triangles.

- use the Converse of the Pythagorean Theorem to analyze two-dimensional shapes.
Language Objective: SWBAT
explain how to use the Converse
of the Pythagorean Theorem to
identify right triangles.
SWBAT use the Pythagorean
Theorem and its converse to solve problems.

Language Objective: SWBAT explain how to use the Pythagorean Theorem to solve problems.

## SWBAT:

- apply the Pythagorean Theorem to find the distance between two points on a coordinate plane.
- use the Pythagorean Theorem to find the perimeter of a figure and to solve problems on the coordinate plane.
- PowerPoint/Word

Document

- Canvas

Small Group:

- Online textbook
examples and
resources
- PowerPoint/Word

Document

- Canvas

Small Group:

- Online textbook
examples and
resources
- PowerPoint/Word

Document

- Canvas

Small Group:

## Grade Level: $8 \quad$ Subject: Math

|  | Language Objective: SWBAT <br> explain how to use the <br> Pythagorean Theorem to find the <br> distance between two points in a <br> coordinate plane. |  |  |
| :--- | :--- | :--- | :--- | :--- |


| Topic \#: 8 Solve Problems Involving Surface Area and Volume ${ }^{\text {a }}$ Duration: \# days (Quarter 2) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Standard(s) | Envision Lesson | Objective | Vocabulary | Materials |
| 8.GM. 1 Identify, define, and describe attributes of three-dimensional geometric objects (right rectangular prisms, cylinders, cones, spheres, and pyramids). Explore the effects of slicing these objects using appropriate technology and describe the twodimensional figure that results. | IN-5 <br> Attributes of 3-Dimensional Figures | SWBAT describe attributes of 3dimensional figures, including the number of bases, faces, edges, and vertices. | - | - Online textbook examples and resources <br> - PowerPoint/Word <br> Document <br> - Canvas <br> Small Group: |
| 8.GM. 1 Identify, define, and describe attributes of three-dimensional geometric objects (right rectangular prisms, cylinders, cones, spheres, and pyramids). Explore the effects of slicing these objects using appropriate technology and describe the twodimensional figure that results. | IN-6 Cross Sections | SWBAT <br> - describe and sketch cross sections of threedimensional figures. <br> - solve problems involving cross sections. | $\bullet$ | - Online textbook examples and resources <br> - PowerPoint/Word Document <br> - Canvas <br> Small Group: |
| 8.C. 1 Solve real-world problems with rational numbers by using multiple operations. <br> 8.GM. 2 Solve real-world and other mathematical problems involving | 8-1 Find Surface Area of ThreeDimensional Figures | SWBAT calculate the surface areas of cylinders, cones, and spheres. <br> Language Objective: SWBAT explain how to find the surface | - cone <br> - cylinder <br> - sphere | - Online textbook examples and resources <br> - PowerPoint/Word <br> Document <br> - Canvas |


| volume of cones, spheres, and pyramids and surface area of spheres. |  | area of cylinders, cones, and spheres. | Small Group: |
| :---: | :---: | :---: | :---: |
| 8.C. 1 Solve real-world problems with rational numbers by using multiple operations. <br> 8.GM. 2 Solve real-world and other mathematical problems involving volume of cones, spheres, and pyramids and surface area of spheres. | 8-2 Find Volume of Cylinders | SWBAT: <br> - identify and use the correct formula to calculate the volume of cylinder. <br> - recognize the relationship between the formulas for the volume of a rectangular prism and the volume of a cylinder. <br> Language Objective: SWBAT explain how to use what I know about finding volumes of rectangular prisms to find the volume of a cylinder. | - Online textbook examples and resources <br> - PowerPoint/Word Document <br> - Canvas <br> Small Group: |
| 8.C. 1 Solve real-world problems with rational numbers by using multiple operations. <br> 8.GM. 2 Solve real-world and other mathematical problems involving volume of cones, spheres, and pyramids and surface area of spheres. | 8-3 Find Volume of Cones | SWBAT: <br> - find the volume of a cone. <br> - recognize the relationship between volume of a cylinder and volume of a cone. <br> Language Objective: SWBAT explain how to find the volume of cones. | - Online textbook examples and resources <br> - PowerPoint/Word <br> Document <br> - Canvas <br> Small Group: |
| 8.GM. 2 Solve real-world and other mathematical problems involving volume of cones, spheres, and pyramids and surface area of spheres. | IN-7 Find Volume of Pyramids | SWBAT: <br> - find the volume of pyramids. | - Online textbook examples and resources |


|  |  | - solve problems involving the volume of pyramids. |  | - PowerPoint/Word <br> Document <br> - Canvas <br> Small Group: |
| :---: | :---: | :---: | :---: | :---: |
| 8.C. 1 Solve real-world problems with rational numbers by using multiple operations. <br> 8.GM. 2 Solve real-world and other mathematical problems involving volume of cones, spheres, and pyramids and surface area of spheres. | 8-4 Find Volume of Spheres | SWBAT: <br> - calculate the volume of a sphere. <br> - recognize the relationship between the formula for the volume of a cone and the volume of a sphere. <br> Language Objective: SWBAT explain how to find the volume of a sphere and tell how to use it to solve problems. | - composite figure | - Online textbook examples and resources <br> - PowerPoint/Word <br> Document <br> - Canvas <br> Small Group: |
| 8.GM. 2 Solve real-world and other mathematical problems involving volume of cones, spheres, and pyramids and surface area of spheres. | 3-Act <br> Mathematical <br> Modeling: <br> Measuring Up <br> (Supplemental) | SWBAT: <br> - use mathematical modeling to represent a problem situation and to propose a solution. <br> - test and verify the appropriateness of their math models. <br> - explain why the results from their mathematical models may not align to the problem situation. |  | - Online textbook examples and resources <br> - PowerPoint/Word Document <br> - Canvas <br> Small Group: |

## Grade Level: $8 \quad$ Subject: Math

| Topic \#: 2 (2-5 to 2-9) Analyze and Solve Linear Equations Continued |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Standard(s) | Envision Lesson | Objective | Vocabulary | Materials |
| 8.C. 1 Solve real-world problems with rational numbers by using multiple operations. <br> 8.AF. 7 Compare properties of two linear functions given in different forms, such as a table of values, equation, verbal description, and graph (e.g., compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed). | 2-5 Compare Proportional Relationships | SWBAT analyze equations, linear graphs, and tables to find unit rates and compare proportional relationships. <br> Language Objective: SWBAT explain how to compare proportional relationships represented in different ways. |  | - Online textbook examples and resources <br> - PowerPoint/Word <br> Document <br> - Canvas <br> Small Group: |
| 8.AF. 7 Compare properties of two linear functions given in different forms, such as a table of values, equation, verbal description, and graph (e.g., compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed). | 2-6 Connect Proportional Relationships and Slope | SWBAT: <br> - find the slope of a line using different strategies. <br> - interpret a slope in context and relate it to steepness on a graph. | - slope | - Online textbook examples and resources <br> - PowerPoint/Word <br> Document <br> - Canvas <br> Small Group: |
| 8.AF. 6 Construct a function to model a linear relationship between two quantities given a verbal description, table of values, or graph. Recognize in y $=m x+b$ that $m$ is the slope (rate of change) and $b$ is the $y$-intercept of the | 2-7 Analyze <br> Linear <br> Equations: $y=$ $m x$ | SWBAT: <br> - understand how the constant of proportionality and the slope relate in a linear equation. |  | - Online textbook examples and resources <br> - PowerPoint/Word <br> Document <br> - Canvas |


| graph, and describe the meaning of each in the context of a problem. |  | - write a linear equation in the form $y=m x$ when the slope is given. <br> - graph a linear equation in the form $y=m x$. |  | Small Group: |
| :---: | :---: | :---: | :---: | :---: |
| 8.AF. 6 Construct a function to model a linear relationship between two quantities given a verbal description, table of values, or graph. Recognize in y $=\mathrm{mx}+\mathrm{b}$ that m is the slope (rate of change) and $b$ is the $y$-intercept of the graph, and describe the meaning of each in the context of a problem. | 2-8 <br> Understand the $Y$-intercept of a Line | SWBAT: <br> - interpret and extend the table or graph of a linear relationship to find its $y$ intercept. <br> - analyze graphs in context to determine and explain the meaning of the $y$ intercept. | - $y$-intercept | - Online textbook examples and resources <br> - PowerPoint/Word <br> Document <br> - Canvas <br> Small Group: |
| 8.AF. 6 Construct a function to model a linear relationship between two quantities given a verbal description, table of values, or graph. Recognize in y $=m x+b$ that $m$ is the slope (rate of change) and $b$ is the $y$-intercept of the graph, and describe the meaning of each in the context of a problem. <br> 8.AF. 5 Interpret the equation $\mathrm{y}=\mathrm{mx}+$ b as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. Describe similarities and differences between linear and nonlinear functions from tables, graphs, verbal descriptions, and equation | 2-9 Analyze <br> Linear <br> Equations: $Y=m x+b$ | SWBAT: <br> - graph a line from an equation in the form $y=$ $m x+b$. <br> - write an equation that represents the given graph of a line. | - slopeintercept form | - Online textbook examples and resources <br> - PowerPoint/Word <br> Document <br> - Canvas <br> Small Group: |

## Grade Level: 8 Subject: Math

## Topic \#: 5

Analyze and Solve Systems of Linear Equations
Duration: \# days (Quarter 3)

| Standard(s) | Envision Lesson | Objective | Vocabulary | Materials |
| :---: | :---: | :---: | :---: | :---: |
| 8.AF. 6 Construct a function to model a linear relationship between two quantities given a verbal description, table of values, or graph. Recognize in y $=m x+b$ that $m$ is the slope (rate of change) and $b$ is the $y$-intercept of the graph, and describe the meaning of each in the context of a problem. | 5-1 Estimate Solutions by Inspection | SWBAT: <br> - examine the graphs of a linear system of equations to determine the number of solutions of the system. <br> - compare the equations in a linear system to determine the number of solutions of the system. | - systems of linear equations <br> - solution of a system of linear equations | - Online textbook examples and resources <br> - PowerPoint/Word <br> Document <br> - Canvas <br> Small Group: |
| 8.AF. 8 Understand that solutions to a system of two linear equations correspond to points of intersection of their graphs because points of intersection satisfy both equations simultaneously. Approximate the solution of a system of equations by graphing and interpreting the reasonableness of the approximation. |  | Language Objective: SWBAT explain how to find the number of solutions a system of linear equations by inspecting the equations. |  |  |
| 8.AF. 6 Construct a function to model a linear relationship between two quantities given a verbal description, table of values, or graph. Recognize in y $=m x+b$ that $m$ is the slope (rate of change) and $b$ is the $y$-intercept of the graph, and describe the meaning of each in the context of a problem. | 5-2 Solve Systems by Graphing | SWBAT create and examine graphs of linear systems of equations to determine the solution. <br> Language Objective: SWBAT explain how to find the solution to a system of equations using graphs. |  | - Online textbook examples and resources <br> - PowerPoint/Word Document <br> - Canvas |
| 8.AF. 8 Understand that solutions to a system of two linear equations |  |  |  | Small Group: |


| correspond to points of intersection of their graphs because points of intersection satisfy both equations simultaneously. Approximate the solution of a system of equations by graphing and interpreting the reasonableness of the approximation. |  |  |  |
| :---: | :---: | :---: | :---: |
| 8.AF. 6 Construct a function to model a linear relationship between two quantities given a verbal description, table of values, or graph. Recognize in y $=m x+b$ that $m$ is the slope (rate of change) and $b$ is the $y$-intercept of the graph, and describe the meaning of each in the context of a problem. <br> 8.AF. 8 Understand that solutions to a system of two linear equations correspond to points of intersection of their graphs because points of intersection satisfy both equations simultaneously. Approximate the solution of a system of equations by graphing and interpreting the reasonableness of the approximation. | 5-3 Solving Systems by Substitution | SWBAT: <br> - understand how substitution can be used to solve a linear system of equations. <br> - apply this understanding to interpret the results with one solution, no solutions, or infinitely many solutions. <br> Language Objective: SWBAT explain who to solve systems of equations by using substitution. | - Online textbook examples and resources <br> - PowerPoint/Word <br> Document <br> - Canvas <br> Small Group: |
| 8.AF. 6 Construct a function to model a linear relationship between two quantities given a verbal description, table of values, or graph. Recognize in y $=\mathrm{mx}+\mathrm{b}$ that m is the slope (rate of change) and $b$ is the $y$-intercept of the graph, and describe the meaning of each in the context of a problem. | 5-4 Solve Systems by Elimination | SWBAT: <br> - understand how the process of elimination can be used to solve a system of linear equations with no solution, one solution, or infinitely many solutions. | - Online textbook examples and resources <br> - PowerPoint/Word <br> Document <br> - Canvas |

## Grade Level: 8

| 8.AF. 8 Understand that solutions to a system of two linear equations correspond to points of intersection of their graphs because points of intersection satisfy both equations simultaneously. Approximate the solution of a system of equations by graphing and interpreting the reasonableness of the approximation. |  | - apply this understanding to solve mathematical and real-world problems. <br> Language Objective: SWBAT explain how to solve systems of equations using elimination. |  | Small Group: |
| :---: | :---: | :---: | :---: | :---: |
| 8.AF. 6 Construct a function to model a linear relationship between two quantities given a verbal description, table of values, or graph. Recognize in y $=m x+b$ that $m$ is the slope (rate of change) and $b$ is the $y$-intercept of the graph, and describe the meaning of each in the context of a problem. <br> 8.AF. 8 Understand that solutions to a system of two linear equations correspond to points of intersection of their graphs because points of intersection satisfy both equations simultaneously. Approximate the solution of a system of equations by graphing and interpreting the reasonableness of the approximation. | 3-Act Mathematical Modeling: Ups and Downs (Supplemental) | SWBAT: <br> - use mathematical modeling to represent a problem situation and to propose a solution. <br> - test and verify the appropriateness of their math models. <br> - explain why the results from their mathematical models may not align exactly to the problem situation. |  | - Online textbook examples and resources <br> - PowerPoint/Word Document <br> - Canvas <br> Small Group: |


| Topic \#: 3 Use Functions to Model Relationships | Duration: \# days (Quarter 3) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Envision | Objective | Vocabulary | Materials |


| 8.AF. 3 Understand that a function assigns to each x -value (independent variable) exactly one $y$-value (dependent variable), and that the graph of a function is the set of ordered pairs ( $\mathrm{x}, \mathrm{y}$ ). | 3-1 <br> Understand <br> Relations and <br> Functions | SWBAT: <br> - identify whether a relation is a function. <br> - interpret a function. <br> Language Objective: SWBAT explain how to tell whether a relation is a function. | - relation <br> - function | - Online textbook examples and resources <br> - PowerPoint/Word <br> Document <br> - Canvas <br> Small Group: |
| :---: | :---: | :---: | :---: | :---: |
| 8.AF. 3 Understand that a function assigns to each x -value (independent variable) exactly one $y$-value (dependent variable), and that the graph of a function is the set of ordered pairs ( $\mathrm{x}, \mathrm{y}$ ). <br> 8.AF. 5 Interpret the equation $y=m x+$ $b$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. Describe similarities and differences between linear and nonlinear functions from tables, graphs, verbal descriptions, and equation. <br> 8.AF. 6 Construct a function to model a linear relationship between two quantities given a verbal description, table of values, or graph. Recognize in y $=m x+b$ that $m$ is the slope (rate of change) and $b$ is the $y$-intercept of the graph, and describe the meaning of each in the context of a problem. | 3-2 Connect <br> Representation <br> s of Functions | SWBAT: <br> - identify functions by their equations, tables, and graphs. <br> - represent linear and nonlinear functions with graphs. <br> Language Objective: SWBAT explain how to identify functions by their equations, tables, and graphs. | - constant rate of change <br> - initial value <br> - linear function <br> - nonlinear function | - Online textbook examples and resources <br> - PowerPoint/Word <br> Document <br> - Canvas <br> Small Group: |

## Critical (1/3)

Moderate (0/2) or
(0/3)
Low (0/1)

| 8.AF. 5 Interpret the equation $\mathrm{y}=\mathrm{mx}+$ $b$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. Describe similarities and differences between linear and nonlinear functions from tables, graphs, verbal descriptions, and equation. <br> 8.AF. 6 Construct a function to model a linear relationship between two quantities given a verbal description, table of values, or graph. Recognize in y $=m x+b$ that $m$ is the slope (rate of change) and $b$ is the $y$-intercept of the graph, and describe the meaning of each in the context of a problem. | 3-3 Compare <br> Linear and <br> Nonlinear <br> Functions | SWBAT use different representations to compare linear and nonlinear functions. <br> Language Objective: SWBAT explain how to compare linear and nonlinear functions. |  | - Online textbook examples and resources <br> - PowerPoint/Word Document <br> - Canvas <br> Small Group: |
| :---: | :---: | :---: | :---: | :---: |
| 8.AF. 3 Understand that a function assigns to each x -value (independent variable) exactly one $y$-value (dependent variable), and that the graph of a function is the set of ordered pairs ( $\mathrm{x}, \mathrm{y}$ ). <br> 8.AF. 6 Construct a function to model a linear relationship between two quantities given a verbal description, table of values, or graph. Recognize in y $=\mathrm{mx}+\mathrm{b}$ that m is the slope (rate of change) and $b$ is the $y$-intercept of the graph, and describe the meaning of each in the context of a problem. | 3-Act <br> Mathematical <br> Modeling: <br> Every Drop <br> Counts <br> (Supplemental) | SWBAT: <br> - use mathematical modeling to represent a problem situation and to propose a solution. <br> - test and verify the appropriateness of their math models. explain why the results from their mathematical models may not align exactly to the problem situation. |  | - Online textbook examples and resources <br> - PowerPoint/Word <br> Document <br> - Canvas <br> Small Group: |

8.AF. 7 Compare properties of two linear functions given in different forms, such as a table of values, equation, verbal description, and graph (e.g., compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed). 8.AF. 6 Construct a function to model a linear relationship between two quantities given a verbal description, table of values, or graph. Recognize in y $=\mathrm{mx}+\mathrm{b}$ that m is the slope (rate of change) and $b$ is the $y$-intercept of the graph, and describe the meaning of each in the context of a problem.
8.AF. 7 Compare properties of two linear functions given in different forms, such as a table of values, equation, verbal description, and graph (e.g., compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed).
8.AF. 4 Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear, has a maximum or minimum value). Sketch a graph that exhibits the qualitative features of a function that has been verbally described.

Subject: Math

3-4 Construct Functions to
Model Linear
Relationships

## 3-5 Intervals of Increase

 and Decrease|

SWBAT write an equation in the form $y=m x+b$ to describe a linear function.

Language Objective: SWBAT
explain how to write an equation in
the from $y=m x+b$ to describe a
linear equation.

SWBAT describe the behavior of a function in different intervals.

Language Objective: SWBAT
explain and show the behavior of a function and write a description to go with its graph.

- Online textbook examples and resources
- PowerPoint/Word

Document

- Canvas

Small Group:

- Online textbook
examples and
resources
- PowerPoint/Word

Document

- Canvas

Small Group:


| \#: 4 Investigate Bivariate Data |  | Duration: \# days (Quarter 4) |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Standard(s) | Envision Lesson | Objective | Vocabulary | Materials |
| 8.DSP. 1 Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantitative variables. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association. | 4-1 Construct and Interpret Scatter Plots | SWBAT: <br> - construct a scatter plot to model paired data. <br> - utilize a scatter plot to identify and interpret the relationship between paired data. <br> Language Objective: SWBAT explain how to construct a scatter plot and how to use it to understand the relationship between paired data. | - cluster <br> - gap <br> - measuremen t <br> - data <br> - negative <br> - association <br> - outlier <br> - positive <br> - scatter plot | - Online textbook examples and resources <br> - PowerPoint/Word <br> Document <br> - Canvas <br> Small Group: |
| 8.DSP. 1 Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantitative variables. | 4-2 Analyze <br> Linear <br> Association | SWBAT: <br> - recognize whether the paired data have a linear association, a nonlinear | - trend line | - Online textbook examples and resources |

## Grade Level: 8 Subject: Math

Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.
8.DSP. 2 Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and describe the model fit by judging the closeness of the data points to the line.
8.DSP. 1 Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantitative variables. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.
8.DSP. 2 Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and describe the model fit by judging the closeness of the data points to the line
8.DSP. 3 Write and use equations that model linear relationships to make predictions, including interpolation and extrapolation, in real-world situations

## Critical (1/3)

Moderate (0/2) or
(0/3)
Low (0/1)

- PowerPoint/Word

Document

- Canvas

Small Group:

- Online textbook
examples and
resources
- PowerPoint/Word

Document

- Canvas

Small Group:

Language Objective: SWBAT
describe how to make a prediction using the equation of a line that closely fits a set of data.
association, or no

- draw a trend line to determine whether a linear association is positive or negative and strong or weak.

Language Objective: SWBAT
explain how to use a line to represent the relationship between paired data.
SWBAT:

- use the slope and $y$ intercept of a trend line to make a prediction.
- make a prediction when no equation is given by drawing trend lines and writing the equation of the linear model.

|  | - PowerPoint/Word Document <br> - Canvas <br> Small Group: |
| :---: | :---: |
|  | - Online textbook examples and resources <br> - PowerPoint/Word Document <br> - Canvas <br> Small Group: |


| involving bivariate measurement data. Interpret the slope and $y$-intercept in context. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 8.DSP. 3 Write and use equations that model linear relationships to make predictions, including interpolation and extrapolation, in real-world situations involving bivariate measurement data. Interpret the slope and $y$-intercept in context. | 4-4 Interpret <br> Two-Way <br> Frequency <br> Tables | SWBAT: <br> - organize paired categorical data into a two-way frequency table. <br> - compare and make conjectures about data displayed in a two-way frequency table. <br> Language Objective: SWBAT explain how to display and interpret relationships between paired categorical data. | - categorical data | - Online textbook examples and resources <br> - PowerPoint/Word <br> Document <br> - Canvas <br> Small Group: |
| 8.DSP. 3 Write and use equations that model linear relationships to make predictions, including interpolation and extrapolation, in real-world situations involving bivariate measurement data. Interpret the slope and $y$-intercept in context. | 4-5 Interpret <br> Two-Way <br> Relative <br> Frequency <br> Tables | SWBAT: <br> - construct two-way relative frequency tables. <br> - compare and make conjectures about data displayed in a two-way relative frequency table. | - relative <br> - frequency table | - Online textbook examples and resources <br> - PowerPoint/Word <br> Document <br> - Canvas <br> Small Group: |
| 8.DSP.5 Represent sample spaces and find probabilities of compound events(independent and dependent) using organized lists, tables, and tree diagrams | IN-2 <br> Outcomes of Compound Events | SWBAT: <br> - use a tree diagram, a table, or an organized list to represent the sample space for a compound event. <br> - use the Multiplication Counting Principle to find | $\bullet$ | - Online textbook examples and resources <br> - PowerPoint/Word <br> Document <br> - Canvas |


| 8.DSP.6 For events with a large number <br> of outcomes, understand the use of the <br> multiplication counting principle. <br> Develop the multiplication counting <br> principle and apply it to situations with a <br> large number of outcomes. |  | the total number of <br> outcomes. |  | Small Group: |
| :--- | :--- | :--- | :--- | :--- |


| complementary, and mutually exclusive events. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 8.DSP. 1 Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantitative variables. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association. <br> 8.DSP. 2 Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and describe the model fit by judging the closeness of the data points to the line. <br> 8.DSP. 3 Write and use equations that model linear relationships to make predictions, including interpolation and extrapolation, in real-world situations involving bivariate measurement data. Interpret the slope and $y$-intercept in context. | 3-Act <br> Mathematical <br> Modeling: <br> Reach Out <br> (Supplemental) | SWBAT: <br> - use mathematical modeling to represent a problem situation and to propose a solution. <br> - test and verify the appropriateness of their math models. <br> - explain why the results from their mathematical models may not align exactly to the problem situation. |  | - Online textbook examples and resources <br> - PowerPoint/Word Document <br> - Canvas <br> Small Group: |

